45 7.4 Conservative Forces and Potential Energy
Summary
- Define conservative force, potential energy, and mechanical energy.
- Explain the potential energy of a spring in terms of its compression when Hooke’s law applies.
- Use the work-energy theorem to show how having only conservative forces implies conservation of mechanical energy.
Potential Energy and Conservative Forces
Work is done by a force, and some forces, such as weight, have special characteristics. A conservative force is one, like the gravitational force, for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken. We can define a potential energy
POTENTIAL ENERGY AND CONSERVATIVE FORCES
Potential energy is the energy a system has due to position, shape, or configuration. It is stored energy that is completely recoverable.
A conservative force is one for which work done by or against it depends only on the starting and ending points of a motion and not on the path taken.
We can define a potential energy
Potential Energy of a Spring
First, let us obtain an expression for the potential energy stored in a spring
where

The equation

Conservation of Mechanical Energy
Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system equals its change in kinetic energy. In equation form, this is
If only conservative forces act, then
where
Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy. That is,
or
This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces. That is,
where i and f denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is known as the conservation of mechanical energy principle. Remember that this applies to the extent that all the forces are conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its mechanical energy,
Example 1: Using Conservation of Mechanical Energy to Calculate the Speed of a Toy Car
A 0.100-kg toy car is propelled by a compressed spring, as shown in Figure 3. The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of the slope.

Strategy
The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used. Thus,
or
where
Solution for (a)
This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the initial height to be zero, so that both
In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction. Solving for the final speed and entering known values yields
Solution for (b)
One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which terms are zero, the conservation of mechanical energy becomes
This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for
Discussion
Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).
Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their corresponding potential energies, just as we did in Example 1. Note also that we do not consider details of the path taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a tremendous simplification, because the path may be complicated and forces may vary along the way.
PHET EXPLORATIONS: ENERGY SKATE PARK
Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Section Summary
- A conservative force is one for which work depends only on the starting and ending points of a motion, not on the path taken.
- We can define potential energy
for any conservative force, just as we defined for the gravitational force. - The potential energy of a spring is
where is the spring’s force constant and is the displacement from its undeformed position. - Mechanical energy is defined to be
for a conservative force. - When only conservative forces act on and within a system, the total mechanical energy is constant. In equation form,
where i and f denote initial and final values. This is known as the conservation of mechanical energy.
Conceptual Questions
1: What is a conservative force?
2: The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is negligible, describe changes in the potential energy of a diving board as a swimmer dives from it, starting just before the swimmer steps on the board until just after his feet leave it.
3: Define mechanical energy. What is the relationship of mechanical energy to nonconservative forces? What happens to mechanical energy if only conservative forces act?
4: What is the relationship of potential energy to conservative force?
Problems & Exercises
1: A
2: A pogo stick has a spring with a force constant of
Glossary
- conservative force
- a force that does the same work for any given initial and final configuration, regardless of the path followed
- potential energy
- energy due to position, shape, or configuration
- potential energy of a spring
- the stored energy of a spring as a function of its displacement; when Hooke’s law applies, it is given by the expression
where is the distance the spring is compressed or extended and is the spring constant
- conservation of mechanical energy
- the rule that the sum of the kinetic energies and potential energies remains constant if only conservative forces act on and within a system
- mechanical energy
- the sum of kinetic energy and potential energy
Solutions
Problems & Exercises
1: